1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize};

use std::mem::MaybeUninit;
use std::ops;
use std::ptr::{self, NonNull};
use std::sync::atomic::Ordering::{self, AcqRel, Acquire, Release};

/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` messages.
pub(crate) struct Block<T> {
    /// The start index of this block.
    ///
    /// Slots in this block have indices in `start_index .. start_index + BLOCK_CAP`.
    start_index: usize,

    /// The next block in the linked list.
    next: AtomicPtr<Block<T>>,

    /// Bitfield tracking slots that are ready to have their values consumed.
    ready_slots: AtomicUsize,

    /// The observed `tail_position` value *after* the block has been passed by
    /// `block_tail`.
    observed_tail_position: UnsafeCell<usize>,

    /// Array containing values pushed into the block. Values are stored in a
    /// continuous array in order to improve cache line behavior when reading.
    /// The values must be manually dropped.
    values: Values<T>,
}

pub(crate) enum Read<T> {
    Value(T),
    Closed,
}

struct Values<T>([UnsafeCell<MaybeUninit<T>>; BLOCK_CAP]);

use super::BLOCK_CAP;

/// Masks an index to get the block identifier.
const BLOCK_MASK: usize = !(BLOCK_CAP - 1);

/// Masks an index to get the value offset in a block.
const SLOT_MASK: usize = BLOCK_CAP - 1;

/// Flag tracking that a block has gone through the sender's release routine.
///
/// When this is set, the receiver may consider freeing the block.
const RELEASED: usize = 1 << BLOCK_CAP;

/// Flag tracking all senders dropped.
///
/// When this flag is set, the send half of the channel has closed.
const TX_CLOSED: usize = RELEASED << 1;

/// Mask covering all bits used to track slot readiness.
const READY_MASK: usize = RELEASED - 1;

/// Returns the index of the first slot in the block referenced by `slot_index`.
#[inline(always)]
pub(crate) fn start_index(slot_index: usize) -> usize {
    BLOCK_MASK & slot_index
}

/// Returns the offset into the block referenced by `slot_index`.
#[inline(always)]
pub(crate) fn offset(slot_index: usize) -> usize {
    SLOT_MASK & slot_index
}

impl<T> Block<T> {
    pub(crate) fn new(start_index: usize) -> Block<T> {
        Block {
            // The absolute index in the channel of the first slot in the block.
            start_index,

            // Pointer to the next block in the linked list.
            next: AtomicPtr::new(ptr::null_mut()),

            ready_slots: AtomicUsize::new(0),

            observed_tail_position: UnsafeCell::new(0),

            // Value storage
            values: unsafe { Values::uninitialized() },
        }
    }

    /// Returns `true` if the block matches the given index.
    pub(crate) fn is_at_index(&self, index: usize) -> bool {
        debug_assert!(offset(index) == 0);
        self.start_index == index
    }

    /// Returns the number of blocks between `self` and the block at the
    /// specified index.
    ///
    /// `start_index` must represent a block *after* `self`.
    pub(crate) fn distance(&self, other_index: usize) -> usize {
        debug_assert!(offset(other_index) == 0);
        other_index.wrapping_sub(self.start_index) / BLOCK_CAP
    }

    /// Reads the value at the given offset.
    ///
    /// Returns `None` if the slot is empty.
    ///
    /// # Safety
    ///
    /// To maintain safety, the caller must ensure:
    ///
    /// * No concurrent access to the slot.
    pub(crate) unsafe fn read(&self, slot_index: usize) -> Option<Read<T>> {
        let offset = offset(slot_index);

        let ready_bits = self.ready_slots.load(Acquire);

        if !is_ready(ready_bits, offset) {
            if is_tx_closed(ready_bits) {
                return Some(Read::Closed);
            }

            return None;
        }

        // Get the value
        let value = self.values[offset].with(|ptr| ptr::read(ptr));

        Some(Read::Value(value.assume_init()))
    }

    /// Writes a value to the block at the given offset.
    ///
    /// # Safety
    ///
    /// To maintain safety, the caller must ensure:
    ///
    /// * The slot is empty.
    /// * No concurrent access to the slot.
    pub(crate) unsafe fn write(&self, slot_index: usize, value: T) {
        // Get the offset into the block
        let slot_offset = offset(slot_index);

        self.values[slot_offset].with_mut(|ptr| {
            ptr::write(ptr, MaybeUninit::new(value));
        });

        // Release the value. After this point, the slot ref may no longer
        // be used. It is possible for the receiver to free the memory at
        // any point.
        self.set_ready(slot_offset);
    }

    /// Signal to the receiver that the sender half of the list is closed.
    pub(crate) unsafe fn tx_close(&self) {
        self.ready_slots.fetch_or(TX_CLOSED, Release);
    }

    /// Resets the block to a blank state. This enables reusing blocks in the
    /// channel.
    ///
    /// # Safety
    ///
    /// To maintain safety, the caller must ensure:
    ///
    /// * All slots are empty.
    /// * The caller holds a unique pointer to the block.
    pub(crate) unsafe fn reclaim(&mut self) {
        self.start_index = 0;
        self.next = AtomicPtr::new(ptr::null_mut());
        self.ready_slots = AtomicUsize::new(0);
    }

    /// Releases the block to the rx half for freeing.
    ///
    /// This function is called by the tx half once it can be guaranteed that no
    /// more senders will attempt to access the block.
    ///
    /// # Safety
    ///
    /// To maintain safety, the caller must ensure:
    ///
    /// * The block will no longer be accessed by any sender.
    pub(crate) unsafe fn tx_release(&self, tail_position: usize) {
        // Track the observed tail_position. Any sender targeting a greater
        // tail_position is guaranteed to not access this block.
        self.observed_tail_position
            .with_mut(|ptr| *ptr = tail_position);

        // Set the released bit, signalling to the receiver that it is safe to
        // free the block's memory as soon as all slots **prior** to
        // `observed_tail_position` have been filled.
        self.ready_slots.fetch_or(RELEASED, Release);
    }

    /// Mark a slot as ready
    fn set_ready(&self, slot: usize) {
        let mask = 1 << slot;
        self.ready_slots.fetch_or(mask, Release);
    }

    /// Returns `true` when all slots have their `ready` bits set.
    ///
    /// This indicates that the block is in its final state and will no longer
    /// be mutated.
    ///
    /// # Implementation
    ///
    /// The implementation walks each slot checking the `ready` flag. It might
    /// be that it would make more sense to coalesce ready flags as bits in a
    /// single atomic cell. However, this could have negative impact on cache
    /// behavior as there would be many more mutations to a single slot.
    pub(crate) fn is_final(&self) -> bool {
        self.ready_slots.load(Acquire) & READY_MASK == READY_MASK
    }

    /// Returns the `observed_tail_position` value, if set
    pub(crate) fn observed_tail_position(&self) -> Option<usize> {
        if 0 == RELEASED & self.ready_slots.load(Acquire) {
            None
        } else {
            Some(self.observed_tail_position.with(|ptr| unsafe { *ptr }))
        }
    }

    /// Loads the next block
    pub(crate) fn load_next(&self, ordering: Ordering) -> Option<NonNull<Block<T>>> {
        let ret = NonNull::new(self.next.load(ordering));

        debug_assert!(unsafe {
            ret.map(|block| block.as_ref().start_index == self.start_index.wrapping_add(BLOCK_CAP))
                .unwrap_or(true)
        });

        ret
    }

    /// Pushes `block` as the next block in the link.
    ///
    /// Returns Ok if successful, otherwise, a pointer to the next block in
    /// the list is returned.
    ///
    /// This requires that the next pointer is null.
    ///
    /// # Ordering
    ///
    /// This performs a compare-and-swap on `next` using AcqRel ordering.
    ///
    /// # Safety
    ///
    /// To maintain safety, the caller must ensure:
    ///
    /// * `block` is not freed until it has been removed from the list.
    pub(crate) unsafe fn try_push(
        &self,
        block: &mut NonNull<Block<T>>,
        success: Ordering,
        failure: Ordering,
    ) -> Result<(), NonNull<Block<T>>> {
        block.as_mut().start_index = self.start_index.wrapping_add(BLOCK_CAP);

        let next_ptr = self
            .next
            .compare_exchange(ptr::null_mut(), block.as_ptr(), success, failure)
            .unwrap_or_else(|x| x);

        match NonNull::new(next_ptr) {
            Some(next_ptr) => Err(next_ptr),
            None => Ok(()),
        }
    }

    /// Grows the `Block` linked list by allocating and appending a new block.
    ///
    /// The next block in the linked list is returned. This may or may not be
    /// the one allocated by the function call.
    ///
    /// # Implementation
    ///
    /// It is assumed that `self.next` is null. A new block is allocated with
    /// `start_index` set to be the next block. A compare-and-swap is performed
    /// with AcqRel memory ordering. If the compare-and-swap is successful, the
    /// newly allocated block is released to other threads walking the block
    /// linked list. If the compare-and-swap fails, the current thread acquires
    /// the next block in the linked list, allowing the current thread to access
    /// the slots.
    pub(crate) fn grow(&self) -> NonNull<Block<T>> {
        // Create the new block. It is assumed that the block will become the
        // next one after `&self`. If this turns out to not be the case,
        // `start_index` is updated accordingly.
        let new_block = Box::new(Block::new(self.start_index + BLOCK_CAP));

        let mut new_block = unsafe { NonNull::new_unchecked(Box::into_raw(new_block)) };

        // Attempt to store the block. The first compare-and-swap attempt is
        // "unrolled" due to minor differences in logic
        //
        // `AcqRel` is used as the ordering **only** when attempting the
        // compare-and-swap on self.next.
        //
        // If the compare-and-swap fails, then the actual value of the cell is
        // returned from this function and accessed by the caller. Given this,
        // the memory must be acquired.
        //
        // `Release` ensures that the newly allocated block is available to
        // other threads acquiring the next pointer.
        let next = NonNull::new(
            self.next
                .compare_exchange(ptr::null_mut(), new_block.as_ptr(), AcqRel, Acquire)
                .unwrap_or_else(|x| x),
        );

        let next = match next {
            Some(next) => next,
            None => {
                // The compare-and-swap succeeded and the newly allocated block
                // is successfully pushed.
                return new_block;
            }
        };

        // There already is a next block in the linked list. The newly allocated
        // block could be dropped and the discovered next block returned;
        // however, that would be wasteful. Instead, the linked list is walked
        // by repeatedly attempting to compare-and-swap the pointer into the
        // `next` register until the compare-and-swap succeed.
        //
        // Care is taken to update new_block's start_index field as appropriate.

        let mut curr = next;

        // TODO: Should this iteration be capped?
        loop {
            let actual = unsafe { curr.as_ref().try_push(&mut new_block, AcqRel, Acquire) };

            curr = match actual {
                Ok(_) => {
                    return next;
                }
                Err(curr) => curr,
            };

            crate::loom::thread::yield_now();
        }
    }
}

/// Returns `true` if the specified slot has a value ready to be consumed.
fn is_ready(bits: usize, slot: usize) -> bool {
    let mask = 1 << slot;
    mask == mask & bits
}

/// Returns `true` if the closed flag has been set.
fn is_tx_closed(bits: usize) -> bool {
    TX_CLOSED == bits & TX_CLOSED
}

impl<T> Values<T> {
    unsafe fn uninitialized() -> Values<T> {
        let mut vals = MaybeUninit::uninit();

        // When fuzzing, `UnsafeCell` needs to be initialized.
        if_loom! {
            let p = vals.as_mut_ptr() as *mut UnsafeCell<MaybeUninit<T>>;
            for i in 0..BLOCK_CAP {
                p.add(i)
                    .write(UnsafeCell::new(MaybeUninit::uninit()));
            }
        }

        Values(vals.assume_init())
    }
}

impl<T> ops::Index<usize> for Values<T> {
    type Output = UnsafeCell<MaybeUninit<T>>;

    fn index(&self, index: usize) -> &Self::Output {
        self.0.index(index)
    }
}