1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
// Take a look at the license at the top of the repository in the LICENSE file.
mod boxed_derive;
mod clone;
mod closure;
mod downgrade_derive;
mod enum_derive;
mod error_domain_derive;
mod flags_attribute;
mod object_interface_attribute;
mod object_subclass_attribute;
mod shared_boxed_derive;
mod variant_derive;
mod utils;
use proc_macro::TokenStream;
use proc_macro_error::proc_macro_error;
use syn::{parse_macro_input, DeriveInput, NestedMeta};
/// Macro for passing variables as strong or weak references into a closure.
///
/// This macro can be useful in combination with closures, e.g. signal handlers, to reduce the
/// boilerplate required for passing strong or weak references into the closure. It will
/// automatically create the new reference and pass it with the same name into the closure.
///
/// If upgrading the weak reference to a strong reference inside the closure is failing, the
/// closure is immediately returning an optional default return value. If none is provided, `()` is
/// returned.
///
/// **⚠️ IMPORTANT ⚠️**
///
/// `glib` needs to be in scope, so unless it's one of the direct crate dependencies, you need to
/// import it because `clone!` is using it. For example:
///
/// ```rust,ignore
/// use gtk::glib;
/// ```
///
/// ### Debugging
///
/// In case something goes wrong inside the `clone!` macro, we use the [`g_debug`] macro. Meaning
/// that if you want to see these debug messages, you'll have to set the `G_MESSAGES_DEBUG`
/// environment variable when running your code (either in the code directly or when running the
/// binary) to either "all" or [`CLONE_MACRO_LOG_DOMAIN`]:
///
/// [`g_debug`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/macro.g_debug.html
/// [`CLONE_MACRO_LOG_DOMAIN`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/constant.CLONE_MACRO_LOG_DOMAIN.html
///
/// ```rust,ignore
/// use glib::CLONE_MACRO_LOG_DOMAIN;
///
/// std::env::set_var("G_MESSAGES_DEBUG", CLONE_MACRO_LOG_DOMAIN);
/// std::env::set_var("G_MESSAGES_DEBUG", "all");
/// ```
///
/// Or:
///
/// ```bash
/// $ G_MESSAGES_DEBUG=all ./binary
/// ```
///
/// ### Passing a strong reference
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let v = Rc::new(1);
/// let closure = clone!(@strong v => move |x| {
/// println!("v: {}, x: {}", v, x);
/// });
///
/// closure(2);
/// ```
///
/// ### Passing a weak reference
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let u = Rc::new(2);
/// let closure = clone!(@weak u => move |x| {
/// println!("u: {}, x: {}", u, x);
/// });
///
/// closure(3);
/// ```
///
/// #### Allowing a nullable weak reference
///
/// In some cases, even if the weak references can't be retrieved, you might want to still have
/// your closure called. In this case, you need to use `@weak-allow-none`:
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let closure = {
/// // This `Rc` won't be available in the closure because it's dropped at the end of the
/// // current block
/// let u = Rc::new(2);
/// clone!(@weak-allow-none u => @default-return false, move |x| {
/// // We need to use a Debug print for `u` because it'll be an `Option`.
/// println!("u: {:?}, x: {}", u, x);
/// true
/// })
/// };
///
/// assert_eq!(closure(3), true);
/// ```
///
/// ### Renaming variables
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let v = Rc::new(1);
/// let u = Rc::new(2);
/// let closure = clone!(@strong v as y, @weak u => move |x| {
/// println!("v as y: {}, u: {}, x: {}", y, u, x);
/// });
///
/// closure(3);
/// ```
///
/// ### Providing a default return value if upgrading a weak reference fails
///
/// You can do it in two different ways:
///
/// Either by providing the value yourself using `@default-return`:
///
/// ```
/// use glib;
/// use glib_macros::clone;
/// use std::rc::Rc;
///
/// let v = Rc::new(1);
/// let closure = clone!(@weak v => @default-return false, move |x| {
/// println!("v: {}, x: {}", v, x);
/// true
/// });
///
/// // Drop value so that the weak reference can't be upgraded.
/// drop(v);
///
/// assert_eq!(closure(2), false);
/// ```
///
/// Or by using `@default-panic` (if the value fails to get upgraded, it'll panic):
///
/// ```should_panic
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// # let v = Rc::new(1);
/// let closure = clone!(@weak v => @default-panic, move |x| {
/// println!("v: {}, x: {}", v, x);
/// true
/// });
/// # drop(v);
/// # assert_eq!(closure(2), false);
/// ```
///
/// ### Errors
///
/// Here is a list of errors you might encounter:
///
/// **Missing `@weak` or `@strong`**:
///
/// ```compile_fail
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// let v = Rc::new(1);
///
/// let closure = clone!(v => move |x| println!("v: {}, x: {}", v, x));
/// # drop(v);
/// # closure(2);
/// ```
///
/// **Passing `self` as an argument**:
///
/// ```compile_fail
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// #[derive(Debug)]
/// struct Foo;
///
/// impl Foo {
/// fn foo(&self) {
/// let closure = clone!(@strong self => move |x| {
/// println!("self: {:?}", self);
/// });
/// # closure(2);
/// }
/// }
/// ```
///
/// If you want to use `self` directly, you'll need to rename it:
///
/// ```
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// #[derive(Debug)]
/// struct Foo;
///
/// impl Foo {
/// fn foo(&self) {
/// let closure = clone!(@strong self as this => move |x| {
/// println!("self: {:?}", this);
/// });
/// # closure(2);
/// }
/// }
/// ```
///
/// **Passing fields directly**
///
/// ```compile_fail
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// #[derive(Debug)]
/// struct Foo {
/// v: Rc<usize>,
/// }
///
/// impl Foo {
/// fn foo(&self) {
/// let closure = clone!(@strong self.v => move |x| {
/// println!("self.v: {:?}", v);
/// });
/// # closure(2);
/// }
/// }
/// ```
///
/// You can do it by renaming it:
///
/// ```
/// # use glib;
/// # use glib_macros::clone;
/// # use std::rc::Rc;
/// # struct Foo {
/// # v: Rc<usize>,
/// # }
/// impl Foo {
/// fn foo(&self) {
/// let closure = clone!(@strong self.v as v => move |x| {
/// println!("self.v: {}", v);
/// });
/// # closure(2);
/// }
/// }
/// ```
#[proc_macro]
#[proc_macro_error]
pub fn clone(item: TokenStream) -> TokenStream {
clone::clone_inner(item)
}
/// Macro for creating a [`Closure`] object. This is a wrapper around [`Closure::new`] that
/// automatically type checks its arguments at run-time.
///
/// A `Closure` takes [`Value`] objects as inputs and output. This macro will automatically convert
/// the inputs to Rust types when invoking its callback, and then will convert the output back to a
/// `Value`. All inputs must implement the [`FromValue`] trait, and outputs must either implement
/// the [`ToValue`] trait or be the unit type `()`. Type-checking of inputs is done at run-time; if
/// incorrect types are passed via [`Closure::invoke`] then the closure will panic. Note that when
/// passing input types derived from [`Object`] or [`Interface`], you must take care to upcast to
/// the exact object or interface type that is being received.
///
/// Similarly to [`clone!`](crate::clone!), this macro can be useful in combination with signal
/// handlers to reduce boilerplate when passing references. Unique to `Closure` objects is the
/// ability to watch an object using a the `@watch` directive. Only an [`Object`] value can be
/// passed to `@watch`, and only one object can be watched per closure. When an object is watched,
/// a weak reference to the object is held in the closure. When the object is destroyed, the
/// closure will become invalidated: all signal handlers connected to the closure will become
/// disconnected, and any calls to [`Closure::invoke`] on the closure will be silently ignored.
/// Internally, this is accomplished using [`Object::watch_closure`] on the watched object.
///
/// The `@weak-allow-none` and `@strong` captures are also supported and behave the same as in
/// [`clone!`](crate::clone!), as is aliasing captures with the `as` keyword. Notably, these
/// captures are able to reference `Rc` and `Arc` values in addition to `Object` values.
///
/// [`Closure`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/closure/struct.Closure.html
/// [`Closure::new`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/closure/struct.Closure.html#method.new
/// [`Closure::new_local`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/closure/struct.Closure.html#method.new_local
/// [`Closure::invoke`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/closure/struct.Closure.html#method.invoke
/// [`Value`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/value/struct.Value.html
/// [`FromValue`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/value/trait.FromValue.html
/// [`ToValue`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/value/trait.ToValue.html
/// [`Interface`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/object/struct.Interface.html
/// [`Object`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/object/struct.Object.html
/// [`Object::watch_closure`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/object/trait.ObjectExt.html#tymethod.watch_closure
/// **⚠️ IMPORTANT ⚠️**
///
/// `glib` needs to be in scope, so unless it's one of the direct crate dependencies, you need to
/// import it because `closure!` is using it. For example:
///
/// ```rust,ignore
/// use gtk::glib;
/// ```
///
/// ### Using as a closure object
///
/// ```
/// use glib_macros::closure;
///
/// let concat_str = closure!(|s: &str| s.to_owned() + " World");
/// let result = concat_str.invoke::<String>(&[&"Hello"]);
/// assert_eq!(result, "Hello World");
/// ```
///
/// ### Connecting to a signal
///
/// For wrapping closures that can't be sent across threads, the
/// [`closure_local!`](crate::closure_local!) macro can be used. It has the same syntax as
/// `closure!`, but instead uses [`Closure::new_local`] internally.
///
/// ```
/// use glib;
/// use glib::prelude::*;
/// use glib_macros::closure_local;
///
/// let obj = glib::Object::new::<glib::Object>(&[]).unwrap();
/// obj.connect_closure(
/// "notify", false,
/// closure_local!(|_obj: glib::Object, pspec: glib::ParamSpec| {
/// println!("property notify: {}", pspec.name());
/// }));
/// ```
///
/// ### Object Watching
///
/// ```
/// use glib;
/// use glib::prelude::*;
/// use glib_macros::closure_local;
///
/// let closure = {
/// let obj = glib::Object::new::<glib::Object>(&[]).unwrap();
/// let closure = closure_local!(@watch obj => move || {
/// obj.type_().name()
/// });
/// assert_eq!(closure.invoke::<String>(&[]), "GObject");
/// closure
/// };
/// // `obj` is dropped, closure invalidated so it always does nothing and returns None
/// closure.invoke::<()>(&[]);
/// ```
///
/// `@watch` has special behavior when connected to a signal:
///
/// ```
/// use glib;
/// use glib::prelude::*;
/// use glib_macros::closure_local;
///
/// let obj = glib::Object::new::<glib::Object>(&[]).unwrap();
/// {
/// let other = glib::Object::new::<glib::Object>(&[]).unwrap();
/// obj.connect_closure(
/// "notify", false,
/// closure_local!(@watch other as b => move |a: glib::Object, pspec: glib::ParamSpec| {
/// let value = a.property_value(pspec.name());
/// b.set_property(pspec.name(), &value);
/// }));
/// // The signal handler will disconnect automatically at the end of this
/// // block when `other` is dropped.
/// }
/// ```
///
/// ### Weak and Strong References
///
/// ```
/// use glib;
/// use glib::prelude::*;
/// use glib_macros::closure;
/// use std::sync::Arc;
///
/// let closure = {
/// let a = Arc::new(String::from("Hello"));
/// let b = Arc::new(String::from("World"));
/// let closure = closure!(@strong a, @weak-allow-none b => move || {
/// // `a` is Arc<String>, `b` is Option<Arc<String>>
/// format!("{} {}", a, b.as_ref().map(|b| b.as_str()).unwrap_or_else(|| "Moon"))
/// });
/// assert_eq!(closure.invoke::<String>(&[]), "Hello World");
/// closure
/// };
/// // `a` still kept alive, `b` is dropped
/// assert_eq!(closure.invoke::<String>(&[]), "Hello Moon");
/// ```
#[proc_macro]
#[proc_macro_error]
pub fn closure(item: TokenStream) -> TokenStream {
closure::closure_inner(item, "new")
}
/// The same as [`closure!`](crate::closure!) but uses [`Closure::new_local`] as a constructor.
/// This is useful for closures which can't be sent across threads. See the documentation of
/// [`closure!`](crate::closure!) for details.
///
/// [`Closure::new_local`]: https://gtk-rs.org/gtk-rs-core/stable/latest/docs/glib/closure/struct.Closure.html#method.new_local
#[proc_macro]
#[proc_macro_error]
pub fn closure_local(item: TokenStream) -> TokenStream {
closure::closure_inner(item, "new_local")
}
/// Derive macro for register a rust enum in the glib type system and derive the
/// the [`glib::Value`] traits.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Debug, Copy, Clone, PartialEq, Eq, glib::Enum)]
/// #[enum_type(name = "MyEnum")]
/// enum MyEnum {
/// Val,
/// #[enum_value(name = "My Val")]
/// ValWithCustomName,
/// #[enum_value(name = "My Other Val", nick = "other")]
/// ValWithCustomNameAndNick,
/// }
/// ```
#[proc_macro_derive(Enum, attributes(enum_type, enum_value))]
#[proc_macro_error]
pub fn enum_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
let gen = enum_derive::impl_enum(&input);
gen.into()
}
/// Attribute macro for defining flags using the `bitflags` crate.
/// This macro will also define a `GFlags::type_` function and
/// the [`glib::Value`] traits.
///
/// The expected `GType` name has to be passed as macro attribute.
/// The name and nick of each flag can also be optionally defined.
/// Default name is the flag identifier in CamelCase and default nick
/// is the identifier in kebab-case.
/// Combined flags should not be registered with the `GType` system
/// and so needs to be tagged with the `#[flags_value(skip)]` attribute.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[glib::flags(name = "MyFlags")]
/// enum MyFlags {
/// #[flags_value(name = "Flag A", nick = "nick-a")]
/// A = 0b00000001,
/// #[flags_value(name = "Flag B")]
/// B = 0b00000010,
/// #[flags_value(skip)]
/// AB = Self::A.bits() | Self::B.bits(),
/// C = 0b00000100,
/// }
/// ```
///
/// [`glib::Value`]: value/struct.Value.html
#[proc_macro_attribute]
#[proc_macro_error]
pub fn flags(attr: TokenStream, item: TokenStream) -> TokenStream {
let attr_meta = parse_macro_input!(attr as NestedMeta);
let input = parse_macro_input!(item as DeriveInput);
let gen = flags_attribute::impl_flags(&attr_meta, &input);
gen.into()
}
/// Derive macro for defining a GLib error domain and its associated
/// [`ErrorDomain`] trait.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Debug, Copy, Clone, glib::ErrorDomain)]
/// #[error_domain(name = "ExFoo")]
/// enum Foo {
/// Blah,
/// Baaz,
/// }
/// ```
///
/// [`ErrorDomain`]: error/trait.ErrorDomain.html
#[proc_macro_derive(ErrorDomain, attributes(error_domain))]
#[proc_macro_error]
pub fn error_domain_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
let gen = error_domain_derive::impl_error_domain(&input);
gen.into()
}
/// Derive macro for defining a [`BoxedType`]`::type_` function and
/// the [`glib::Value`] traits.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Clone, Debug, PartialEq, Eq, glib::Boxed)]
/// #[boxed_type(name = "MyBoxed")]
/// struct MyBoxed(String);
/// ```
///
/// [`BoxedType`]: subclass/boxed/trait.BoxedType.html
/// [`glib::Value`]: value/struct.Value.html
#[proc_macro_derive(Boxed, attributes(boxed_nullable, boxed_type))]
#[proc_macro_error]
pub fn boxed_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
let gen = boxed_derive::impl_boxed(&input);
gen.into()
}
/// Derive macro for defining a [`SharedType`]`::get_type` function and
/// the [`glib::Value`] traits.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
/// use glib::subclass::prelude::*;
///
/// #[derive(Clone, Debug, PartialEq, Eq)]
/// struct MySharedInner {
/// foo: String,
/// }
/// #[derive(Clone, Debug, PartialEq, Eq, glib::SharedBoxed)]
/// #[shared_boxed_type(name = "MySharedBoxed")]
/// struct MyShared(std::sync::Arc<MySharedInner>);
/// ```
///
/// [`SharedType`]: subclass/shared/trait.SharedType.html
/// [`glib::Value`]: value/struct.Value.html
#[proc_macro_derive(SharedBoxed, attributes(shared_boxed_nullable, shared_boxed_type))]
#[proc_macro_error]
pub fn shared_boxed_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
let gen = shared_boxed_derive::impl_shared_boxed(&input);
gen.into()
}
/// Macro for boilerplate of [`ObjectSubclass`] implementations.
///
/// This adds implementations for the `type_data()` and `type_()` methods,
/// which should probably never be defined differently.
///
/// It provides default values for the `Instance`, `Class`, and `Interfaces`
/// type parameters. If these are present, the macro will use the provided value
/// instead of the default.
///
/// Usually the defaults for `Instance` and `Class` will work. `Interfaces` is
/// necessary for types that implement interfaces.
///
/// ```ignore
/// type Instance = glib::subclass::simple::InstanceStruct<Self>;
/// type Class = glib::subclass::simple::ClassStruct<Self>;
/// type Interfaces = ();
/// ```
///
/// If no `new()` or `with_class()` method is provide, the macro adds a `new()`
/// implementation calling `Default::default()`. So the type needs to implement
/// `Default`, or this should be overridden.
///
/// ```ignore
/// fn new() -> Self {
/// Default::default()
/// }
/// ```
///
/// [`ObjectSubclass`]: subclass/types/trait.ObjectSubclass.html
#[proc_macro_attribute]
#[proc_macro_error]
pub fn object_subclass(_attr: TokenStream, item: TokenStream) -> TokenStream {
use proc_macro_error::abort_call_site;
match syn::parse::<syn::ItemImpl>(item) {
Ok(input) => object_subclass_attribute::impl_object_subclass(&input).into(),
Err(_) => abort_call_site!(object_subclass_attribute::WRONG_PLACE_MSG),
}
}
/// Macro for boilerplate of [`ObjectInterface`] implementations.
///
/// This adds implementations for the `get_type()` method, which should probably never be defined
/// differently.
///
/// It provides default values for the `Prerequisites` type parameter. If this present, the macro
/// will use the provided value instead of the default.
///
/// `Prerequisites` is interfaces for types that require a specific base class or interfaces.
///
/// ```ignore
/// type Prerequisites = ();
/// ```
///
/// [`ObjectInterface`]: interface/types/trait.ObjectInterface.html
#[proc_macro_attribute]
#[proc_macro_error]
pub fn object_interface(_attr: TokenStream, item: TokenStream) -> TokenStream {
use proc_macro_error::abort_call_site;
match syn::parse::<syn::ItemImpl>(item) {
Ok(input) => object_interface_attribute::impl_object_interface(&input).into(),
Err(_) => abort_call_site!(object_interface_attribute::WRONG_PLACE_MSG),
}
}
/// Macro for deriving implementations of [`glib::clone::Downgrade`] and
/// [`glib::clone::Upgrade`] traits and a weak type.
///
/// # Examples
///
/// ## New Type Idiom
///
/// ```rust,ignore
/// #[derive(glib::Downgrade)]
/// pub struct FancyLabel(gtk::Label);
///
/// impl FancyLabel {
/// pub fn new(label: &str) -> Self {
/// Self(gtk::LabelBuilder::new().label(label).build())
/// }
///
/// pub fn flip(&self) {
/// self.0.set_angle(180.0 - self.0.angle());
/// }
/// }
///
/// let fancy_label = FancyLabel::new("Look at me!");
/// let button = gtk::ButtonBuilder::new().label("Click me!").build();
/// button.connect_clicked(clone!(@weak fancy_label => move || fancy_label.flip()));
/// ```
///
/// ## Generic New Type
///
/// ```rust,ignore
/// #[derive(glib::Downgrade)]
/// pub struct TypedEntry<T>(gtk::Entry, std::marker::PhantomData<T>);
///
/// impl<T: ToString + FromStr> for TypedEntry<T> {
/// // ...
/// }
/// ```
///
/// ## Structures and Enums
///
/// ```rust,ignore
/// #[derive(Clone, glib::Downgrade)]
/// pub struct ControlButtons {
/// pub up: gtk::Button,
/// pub down: gtk::Button,
/// pub left: gtk::Button,
/// pub right: gtk::Button,
/// }
///
/// #[derive(Clone, glib::Downgrade)]
/// pub enum DirectionButton {
/// Left(gtk::Button),
/// Right(gtk::Button),
/// Up(gtk::Button),
/// Down(gtk::Button),
/// }
/// ```
///
/// [`glib::clone::Downgrade`]: clone/trait.Downgrade.html
/// [`glib::clone::Upgrade`]: clone/trait.Upgrade.html
#[proc_macro_derive(Downgrade)]
pub fn downgrade(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
downgrade_derive::impl_downgrade(input)
}
/// Derive macro for serializing/deserializing custom structs as [`glib::Variant`]s.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
///
/// #[derive(Debug, PartialEq, Eq, glib::Variant)]
/// struct Foo {
/// some_string: String,
/// some_int: i32,
/// }
///
/// let v = Foo { some_string: String::from("bar"), some_int: 1 };
/// let var = v.to_variant();
/// assert_eq!(var.get::<Foo>(), Some(v));
/// ```
///
/// When storing `Vec`s of fixed size types it is a good idea to wrap these in
/// `glib::FixedSizeVariantArray` as serialization/deserialization will be more efficient.
///
/// # Example
///
/// ```
/// use glib::prelude::*;
///
/// #[derive(Debug, PartialEq, Eq, glib::Variant)]
/// struct Foo {
/// some_vec: glib::FixedSizeVariantArray<Vec<u32>, u32>,
/// some_int: i32,
/// }
///
/// let v = Foo { some_vec: vec![1u32, 2u32].into(), some_int: 1 };
/// let var = v.to_variant();
/// assert_eq!(var.get::<Foo>(), Some(v));
/// ```
///
/// [`glib::Variant`]: variant/struct.Variant.html
#[proc_macro_derive(Variant)]
pub fn variant_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
variant_derive::impl_variant(input)
}
#[proc_macro]
pub fn cstr_bytes(item: TokenStream) -> TokenStream {
syn::parse::Parser::parse2(
|stream: syn::parse::ParseStream<'_>| {
let literal = stream.parse::<syn::LitStr>()?;
stream.parse::<syn::parse::Nothing>()?;
let bytes = std::ffi::CString::new(literal.value())
.map_err(|e| syn::Error::new_spanned(&literal, format!("{}", e)))?
.into_bytes_with_nul();
let bytes = proc_macro2::Literal::byte_string(&bytes);
Ok(quote::quote! { #bytes }.into())
},
item.into(),
)
.unwrap_or_else(|e| e.into_compile_error().into())
}