1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#![allow(clippy::unit_arg)]

use std::cmp;
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::num::NonZeroUsize;

use crate::errors::InvalidThreadAccess;
use crate::registry;
use crate::thread_id;

/// A `Sticky<T>` keeps a value T stored in a thread.
///
/// This type works similar in nature to `Fragile<T>` and exposes a
/// similar interface.  The difference is that whereas `Fragile<T>` has
/// its destructor called in the thread where the value was sent, a
/// `Sticky<T>` that is moved to another thread will have the internal
/// destructor called when the originating thread tears down.
///
/// Because `Sticky<T>` allows values to be kept alive for longer than the
/// `Sticky<T>` itself, it requires all its contents to be `'static` for
/// soundness.
///
/// As this uses TLS internally the general rules about the platform limitations
/// of destructors for TLS apply.
pub struct Sticky<T: 'static> {
    item_id: registry::ItemId,
    thread_id: NonZeroUsize,
    _marker: PhantomData<*mut T>,
}

impl<T> Drop for Sticky<T> {
    fn drop(&mut self) {
        if mem::needs_drop::<T>() {
            unsafe {
                if self.is_valid() {
                    self.unsafe_take_value();
                }
            }
        }
    }
}

impl<T> Sticky<T> {
    /// Creates a new `Sticky` wrapping a `value`.
    ///
    /// The value that is moved into the `Sticky` can be non `Send` and
    /// will be anchored to the thread that created the object.  If the
    /// sticky wrapper type ends up being send from thread to thread
    /// only the original thread can interact with the value.
    pub fn new(value: T) -> Self {
        let entry = registry::Entry {
            ptr: Box::into_raw(Box::new(value)).cast(),
            drop: |ptr| {
                let ptr = ptr.cast::<T>();
                // SAFETY: This callback will only be called once, with the
                // above pointer.
                drop(unsafe { Box::from_raw(ptr) });
            },
        };

        let thread_id = thread_id::get();
        let item_id = registry::insert(thread_id, entry);

        Sticky {
            item_id,
            thread_id,
            _marker: PhantomData,
        }
    }

    #[inline(always)]
    fn with_value<F: FnOnce(*mut T) -> R, R>(&self, f: F) -> R {
        self.assert_thread();

        registry::with(self.item_id, self.thread_id, |entry| {
            f(entry.ptr.cast::<T>())
        })
    }

    /// Returns `true` if the access is valid.
    ///
    /// This will be `false` if the value was sent to another thread.
    #[inline(always)]
    pub fn is_valid(&self) -> bool {
        thread_id::get() == self.thread_id
    }

    #[inline(always)]
    fn assert_thread(&self) {
        if !self.is_valid() {
            panic!("trying to access wrapped value in sticky container from incorrect thread.");
        }
    }

    /// Consumes the `Sticky`, returning the wrapped value.
    ///
    /// # Panics
    ///
    /// Panics if called from a different thread than the one where the
    /// original value was created.
    pub fn into_inner(mut self) -> T {
        self.assert_thread();
        unsafe {
            let rv = self.unsafe_take_value();
            mem::forget(self);
            rv
        }
    }

    unsafe fn unsafe_take_value(&mut self) -> T {
        let ptr = registry::remove(self.item_id, self.thread_id)
            .ptr
            .cast::<T>();
        *Box::from_raw(ptr)
    }

    /// Consumes the `Sticky`, returning the wrapped value if successful.
    ///
    /// The wrapped value is returned if this is called from the same thread
    /// as the one where the original value was created, otherwise the
    /// `Sticky` is returned as `Err(self)`.
    pub fn try_into_inner(self) -> Result<T, Self> {
        if self.is_valid() {
            Ok(self.into_inner())
        } else {
            Err(self)
        }
    }

    /// Immutably borrows the wrapped value.
    ///
    /// # Panics
    ///
    /// Panics if the calling thread is not the one that wrapped the value.
    /// For a non-panicking variant, use [`try_get`](#method.try_get`).
    pub fn get(&self) -> &T {
        self.with_value(|value| unsafe { &*value })
    }

    /// Mutably borrows the wrapped value.
    ///
    /// # Panics
    ///
    /// Panics if the calling thread is not the one that wrapped the value.
    /// For a non-panicking variant, use [`try_get_mut`](#method.try_get_mut`).
    pub fn get_mut(&mut self) -> &mut T {
        self.with_value(|value| unsafe { &mut *value })
    }

    /// Tries to immutably borrow the wrapped value.
    ///
    /// Returns `None` if the calling thread is not the one that wrapped the value.
    pub fn try_get(&self) -> Result<&T, InvalidThreadAccess> {
        if self.is_valid() {
            Ok(self.with_value(|value| unsafe { &*value }))
        } else {
            Err(InvalidThreadAccess)
        }
    }

    /// Tries to mutably borrow the wrapped value.
    ///
    /// Returns `None` if the calling thread is not the one that wrapped the value.
    pub fn try_get_mut(&mut self) -> Result<&mut T, InvalidThreadAccess> {
        if self.is_valid() {
            Ok(self.with_value(|value| unsafe { &mut *value }))
        } else {
            Err(InvalidThreadAccess)
        }
    }
}

impl<T> From<T> for Sticky<T> {
    #[inline]
    fn from(t: T) -> Sticky<T> {
        Sticky::new(t)
    }
}

impl<T: Clone> Clone for Sticky<T> {
    #[inline]
    fn clone(&self) -> Sticky<T> {
        Sticky::new(self.get().clone())
    }
}

impl<T: Default> Default for Sticky<T> {
    #[inline]
    fn default() -> Sticky<T> {
        Sticky::new(T::default())
    }
}

impl<T: PartialEq> PartialEq for Sticky<T> {
    #[inline]
    fn eq(&self, other: &Sticky<T>) -> bool {
        *self.get() == *other.get()
    }
}

impl<T: Eq> Eq for Sticky<T> {}

impl<T: PartialOrd> PartialOrd for Sticky<T> {
    #[inline]
    fn partial_cmp(&self, other: &Sticky<T>) -> Option<cmp::Ordering> {
        self.get().partial_cmp(&*other.get())
    }

    #[inline]
    fn lt(&self, other: &Sticky<T>) -> bool {
        *self.get() < *other.get()
    }

    #[inline]
    fn le(&self, other: &Sticky<T>) -> bool {
        *self.get() <= *other.get()
    }

    #[inline]
    fn gt(&self, other: &Sticky<T>) -> bool {
        *self.get() > *other.get()
    }

    #[inline]
    fn ge(&self, other: &Sticky<T>) -> bool {
        *self.get() >= *other.get()
    }
}

impl<T: Ord> Ord for Sticky<T> {
    #[inline]
    fn cmp(&self, other: &Sticky<T>) -> cmp::Ordering {
        self.get().cmp(&*other.get())
    }
}

impl<T: fmt::Display> fmt::Display for Sticky<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        fmt::Display::fmt(self.get(), f)
    }
}

impl<T: fmt::Debug> fmt::Debug for Sticky<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        match self.try_get() {
            Ok(value) => f.debug_struct("Sticky").field("value", value).finish(),
            Err(..) => {
                struct InvalidPlaceholder;
                impl fmt::Debug for InvalidPlaceholder {
                    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                        f.write_str("<invalid thread>")
                    }
                }

                f.debug_struct("Sticky")
                    .field("value", &InvalidPlaceholder)
                    .finish()
            }
        }
    }
}

// similar as for fragile ths type is sync because it only accesses TLS data
// which is thread local.  There is nothing that needs to be synchronized.
unsafe impl<T> Sync for Sticky<T> {}

// The entire point of this type is to be Send
unsafe impl<T> Send for Sticky<T> {}

#[test]
fn test_basic() {
    use std::thread;
    let val = Sticky::new(true);
    assert_eq!(val.to_string(), "true");
    assert_eq!(val.get(), &true);
    assert!(val.try_get().is_ok());
    thread::spawn(move || {
        assert!(val.try_get().is_err());
    })
    .join()
    .unwrap();
}

#[test]
fn test_mut() {
    let mut val = Sticky::new(true);
    *val.get_mut() = false;
    assert_eq!(val.to_string(), "false");
    assert_eq!(val.get(), &false);
}

#[test]
#[should_panic]
fn test_access_other_thread() {
    use std::thread;
    let val = Sticky::new(true);
    thread::spawn(move || {
        val.get();
    })
    .join()
    .unwrap();
}

#[test]
fn test_drop_same_thread() {
    use std::sync::atomic::{AtomicBool, Ordering};
    use std::sync::Arc;
    let was_called = Arc::new(AtomicBool::new(false));
    struct X(Arc<AtomicBool>);
    impl Drop for X {
        fn drop(&mut self) {
            self.0.store(true, Ordering::SeqCst);
        }
    }
    let val = Sticky::new(X(was_called.clone()));
    mem::drop(val);
    assert!(was_called.load(Ordering::SeqCst));
}

#[test]
fn test_noop_drop_elsewhere() {
    use std::sync::atomic::{AtomicBool, Ordering};
    use std::sync::Arc;
    use std::thread;

    let was_called = Arc::new(AtomicBool::new(false));

    {
        let was_called = was_called.clone();
        thread::spawn(move || {
            struct X(Arc<AtomicBool>);
            impl Drop for X {
                fn drop(&mut self) {
                    self.0.store(true, Ordering::SeqCst);
                }
            }

            let val = Sticky::new(X(was_called.clone()));
            assert!(thread::spawn(move || {
                // moves it here but do not deallocate
                val.try_get().ok();
            })
            .join()
            .is_ok());

            assert!(!was_called.load(Ordering::SeqCst));
        })
        .join()
        .unwrap();
    }

    assert!(was_called.load(Ordering::SeqCst));
}

#[test]
fn test_rc_sending() {
    use std::rc::Rc;
    use std::thread;
    let val = Sticky::new(Rc::new(true));
    thread::spawn(move || {
        assert!(val.try_get().is_err());
    })
    .join()
    .unwrap();
}